com.google.api.grpc:proto-google-cloud-redis-v1

2.59.0last stable release 2 weeks ago
Complexity Score
High
Open Issues
N/A
Dependent Projects
3

License

  • Apache-2.0
    • Yesattribution
    • Permissivelinking
    • Permissivedistribution
    • Permissivemodification
    • Yespatent grant
    • Yesprivate use
    • Permissivesublicensing
    • Notrademark grant

Readme

Google Cloud Java Client Libraries

Java idiomatic client for Google Cloud Platform services.

  • Java on Google Cloud

Supported APIs

Libraries are available on GitHub and Maven Central for developing Java applications that interact with individual Google Cloud services:

Client Release Level Version AI Platform Notebooks API Gateway API Keys API Access Approval Advisory Notifications API AlloyDB AlloyDB connectors Analytics Hub API Apigee Connect App Engine Admin API Artifact Registry Asset Inventory Assured Workloads for Government Auto ML Backup and DR Service API BigQuery BigQuery Connection BigQuery Data Transfer Service BigQuery Reservation BigQuery Storage Bigtable Bigtable Hbase Client Billing Billing Budgets Binary Authorization Build CCAI Insights Certificate Authority Service Channel Services Composer Compute Engine Connect Gateway API Container Analysis Controls Partner API DNS Data Catalog Data Fusion Data Lineage Data Loss Prevention Database Migration Service Dataplex Dataproc Dataproc Metastore Datastore Datastream Debugger Deploy Dialogflow API Discovery Engine API Distributed Edge Distributed Edge Network API Document AI Domains Essential Contacts API Eventarc Filestore API Firestore Fleet Routing Functions GKE Hub API IAM IAM Admin API IAM Policy Troubleshooter API IAM Service Account Credentials API Identity Access Context Manager Identity-Aware Proxy API Infrastructure Manager API Internet of Things (IoT) Core Intrusion Detection System Key Management Service Kubernetes Engine Logging Managed Service for Microsoft Active Directory Memcache Monitoring Dashboards Natural Language Network Connectivity Center Network Management API Network Security API OS Config API OS Login Organization Policy Profiler Pub/Sub Pub/Sub Group Kafka Connector Pub/Sub Lite Pub/Sub Lite Kafka Shim Pub/Sub Lite Spark Connector Public Certificate Authority API Quotas API Recommender Redis Resource Manager API Resource Settings API Retail Routes API Scheduler Secret Management Secure Source Manager API Security Center Management API Security Command Center Security Posture API Security Scanner Serverless VPC Access Service Control API Service Directory Service Management API Service Usage Shell Spanner Spanner JDBC Speech Stackdriver Monitoring Stackdriver Trace Storage Storage Transfer Service TPU Talent Solution Tasks Telco Automation API Text-to-Speech Translation VM Migration Vertex AI VertexAI API Video Intelligence Video Stitcher API Video Transcoder Vision Web Risk Workflow Executions Workflows Workspace Add-ons API Workstations reCAPTCHA Enterprise API hub API Ad Manager API Address Validation API Analytics Admin Analytics Data Analytics Hub Anthos Multicloud Managed Service for Apache Kafka API App Hub API Area 120 Tables Backup for GKE Bare Metal Solution Batch BeyondCorp AppConnections BeyondCorp AppConnectors BeyondCorp AppGateways BeyondCorp ClientConnectorServices BeyondCorp ClientGateways BigLake BigQuery DataPolicy API BigQuery Migration CSS API Certificate Manager Chat API Commerce Consumer Procurement Confidential Computing API Connect Gateway API Data Labeling Dataflow Dataform Developer Connect API Dialogflow CX Document AI Warehouse Enterprise Knowledge Graph Error Reporting Eventarc Publishing GDC Hardware Management API KMS Inventory API Life Sciences Live Stream API Logging Logback Appender Logging Servlet Initializer Maps Platform Datasets API Marketing Platform Admin API Media Translation API Meet API Memorystore for Redis API Merchant API Merchant API Merchant API Merchant API Merchant API Merchant API Merchant Conversions API Merchant LFP API Merchant Notifications API Merchant Quota API Migration Center API Monitoring Metrics Scopes NIO Filesystem Provider for Storage NetApp API Network Services API Oracle Database@API Parallelstore API Phishing Protection Places API (New) Places Insights API Policy Simulator API Private Catalog Privileged Access Manager API Pub/Sub Lite Flink Connector Rapid Migration Assessment API Recommendations AI Registry API Route Optimization API Run Security Command Center Settings API Service Health API Solar API Storage Insights API Support API VMware Engine Vision AI API Workspace Events API

If the service is not listed, google-api-java-client interfaces with additional Google Cloud APIs using a legacy REST interface.

When building Java applications, preference should be given to the libraries listed in the table.

Specifying a Project ID

Most google-cloud libraries require a project ID. There are multiple ways to specify this project ID.

  1. When using google-cloud libraries from within Compute/App Engine, there’s no need to specify a project ID. It is automatically inferred from the production environment.
  2. When using google-cloud elsewhere, you can do one of the following:
  • Supply the project ID when building the service options. For example, to use Datastore from a project with ID “PROJECT_ID”, you can write:

    Datastore datastore = DatastoreOptions.newBuilder().setProjectId("PROJECT_ID").build().getService();
    
  • Specify the environment variable GOOGLE_CLOUD_PROJECT to be your desired project ID.

  • Set the project ID using the Google Cloud SDK. To use the SDK, download the SDK if you haven’t already, and set the project ID from the command line. For example:

    gcloud config set project PROJECT_ID
    

google-cloud determines the project ID from the following sources in the listed order, stopping once it finds a value:

  1. The project ID supplied when building the service options
  2. Project ID specified by the environment variable GOOGLE_CLOUD_PROJECT
  3. The App Engine / Compute Engine project ID
  4. The project ID specified in the JSON credentials file pointed by the GOOGLE_APPLICATION_CREDENTIALS environment variable
  5. The Google Cloud SDK project ID

In cases where the library may expect a project ID explicitly, we provide a helper that can provide the inferred project ID:

  import com.google.cloud.ServiceOptions;
  ...
  String projectId = ServiceOptions.getDefaultProjectId();

Authentication

google-cloud-java uses https://github.com/googleapis/google-auth-library-java to authenticate requests. google-auth-library-java supports a wide range of authentication types; see the project’s README and javadoc for more details.

Google Cloud Platform environment

When using Google Cloud libraries from a Google Cloud Platform environment such as Compute Engine, Kubernetes Engine, or App Engine, no additional authentication steps are necessary.

For example:

Storage storage = StorageOptions.getDefaultInstance().getService();

or:

CloudTasksClient cloudTasksClient = CloudTasksClient.create();

Other environments

Using a service account (recommended)

  1. Generate a JSON service account key.

  2. After downloading that key, you must do one of the following:

    • Define the environment variable GOOGLE_APPLICATION_CREDENTIALS to be the location of the key. For example:
    export GOOGLE_APPLICATION_CREDENTIALS=/path/to/my/key.json
    
    • Supply the JSON credentials file when building the service options. For example, this Storage object has the necessary permissions to interact with your Google Cloud Storage data:
    Storage storage = StorageOptions.newBuilder()
        .setCredentials(ServiceAccountCredentials.fromStream(new FileInputStream("/path/to/my/key.json")))
        .build()
        .getService();
    

Local development/testing

If running locally for development/testing, you can use the Google Cloud SDK. Create Application Default Credentials with gcloud auth application-default login, and then google-cloud will automatically detect such credentials.

Existing OAuth2 access token

If you already have an OAuth2 access token, you can use it to authenticate (notice that in this case, the access token will not be automatically refreshed):

Credentials credentials = GoogleCredentials.create(new AccessToken(accessToken, expirationTime));
Storage storage = StorageOptions.newBuilder()
    .setCredentials(credentials)
    .build()
    .getService();

or:

Credentials credentials = GoogleCredentials.create(new AccessToken(accessToken, expirationTime));
CloudTasksSettings cloudTasksSettings = CloudTasksSettings.newBuilder()
    .setCredentialProvider(FixedCredentialsProvider.create(credentials))
    .build();
CloudTasksClient cloudTasksClient = CloudTasksClient.create(cloudTasksSettings);

Application Default Credentials

If no credentials are provided, google-cloud will attempt to detect them from the environment using GoogleCredentials.getApplicationDefault() which will search for Application Default Credentials in the following locations (in order):

  1. The credentials file pointed to by the GOOGLE_APPLICATION_CREDENTIALS environment variable
  2. Credentials provided by the Google Cloud SDK gcloud auth application-default login command
  3. Google App Engine built-in credentials
  4. Google Cloud Shell built-in credentials
  5. Google Compute Engine built-in credentials

Authenticating with an API Key

Authenticating with API Keys is supported by a handful of Google Cloud APIs.

We are actively exploring ways to improve the API Key experience. Currently, to use an API Key with a Java client library, you need to set the header for the relevant service Client manually.

For example, to set the API Key with the Language service:

public LanguageServiceClient createGrpcClientWithApiKey(String apiKey) throws Exception {
    // Manually set the api key via the header
    Map<String, String> header = new HashMap<String, String>() { {put("x-goog-api-key", apiKey);}};
    FixedHeaderProvider headerProvider = FixedHeaderProvider.create(header);

    // Create the client
    TransportChannelProvider transportChannelProvider = InstantiatingGrpcChannelProvider.newBuilder().setHeaderProvider(headerProvider).build();
    LanguageServiceSettings settings = LanguageServiceSettings.newBuilder().setTransportChannelProvider(transportChannelProvider).build();
    LanguageServiceClient client = LanguageServiceClient.create(settings);
    return client;
  }

An example instantiation with the Language Client using rest:

 public LanguageServiceClient createRestClientWithApiKey(String apiKey) throws Exception {
    // Manually set the api key header
    Map<String, String> header = new HashMap<String, String>() { {put("x-goog-api-key", apiKey);}};
    FixedHeaderProvider headerProvider = FixedHeaderProvider.create(header);

    // Create the client
    TransportChannelProvider transportChannelProvider = InstantiatingHttpJsonChannelProvider.newBuilder().setHeaderProvider(headerProvider).build();
    LanguageServiceSettings settings = LanguageServiceSettings.newBuilder().setTransportChannelProvider(transportChannelProvider).build();
    LanguageServiceClient client = LanguageServiceClient.create(settings);
    return client;
  }

Troubleshooting

To get help, follow the instructions in the Troubleshooting document.

Configuring a Proxy

Google Cloud client libraries use HTTPS and gRPC in underlying communication with the services. In both protocols, you can configure a proxy using https.proxyHost and (optional) https.proxyPort properties.

gRPC Custom Proxy Configuration

For a more custom proxy with gRPC, you will need supply a ProxyDetector to the ManagedChannelBuilder:

import com.google.api.core.ApiFunction;
import com.google.api.gax.rpc.TransportChannelProvider;
import com.google.cloud.tasks.v2.CloudTasksClient;
import com.google.cloud.tasks.v2.CloudTasksSettings;
import com.google.cloud.tasks.v2.stub.CloudTasksStubSettings;
import io.grpc.HttpConnectProxiedSocketAddress;
import io.grpc.ManagedChannelBuilder;
import io.grpc.ProxiedSocketAddress;
import io.grpc.ProxyDetector;

import javax.annotation.Nullable;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.SocketAddress;

public CloudTasksClient getService() throws IOException {
  TransportChannelProvider transportChannelProvider =
      CloudTasksStubSettings.defaultGrpcTransportProviderBuilder()
          .setChannelConfigurator(
              new ApiFunction<ManagedChannelBuilder, ManagedChannelBuilder>() {
                @Override
                public ManagedChannelBuilder apply(ManagedChannelBuilder managedChannelBuilder) {
                  return managedChannelBuilder.proxyDetector(
                      new ProxyDetector() {
                        @Nullable
                        @Override
                        public ProxiedSocketAddress proxyFor(SocketAddress socketAddress)
                            throws IOException {
                          return HttpConnectProxiedSocketAddress.newBuilder()
                              .setUsername(PROXY_USERNAME)
                              .setPassword(PROXY_PASSWORD)
                              .setProxyAddress(new InetSocketAddress(PROXY_HOST, PROXY_PORT))
                              .setTargetAddress((InetSocketAddress) socketAddress)
                              .build();
                        }
                      });
                }
              })
          .build();
  CloudTasksSettings cloudTasksSettings =
      CloudTasksSettings.newBuilder()
          .setTransportChannelProvider(transportChannelProvider)
          .build();
  return CloudTasksClient.create(cloudTasksSettings);
}

Long Running Operations

Long running operations (LROs) are often used for API calls that are expected to take a long time to complete (i.e. provisioning a GCE instance or a Dataflow pipeline). The initial API call creates an “operation” on the server and returns an Operation ID to track its progress. LRO RPCs have the suffix Async appended to the call name (i.e. clusterControllerClient.createClusterAsync())

Our generated clients provide a nice interface for starting the operation and then waiting for the operation to complete. This is accomplished by returning an OperationFuture. When calling get() on the OperationFuture, the client library will poll the operation to check the operation’s status.

For example, take a sample createCluster Operation in google-cloud-dataproc v4.20.0:

try (ClusterControllerClient clusterControllerClient = ClusterControllerClient.create()) {
  CreateClusterRequest request =
      CreateClusterRequest.newBuilder()
          .setProjectId("{PROJECT_ID}")
          .setRegion("{REGION}")
          .setCluster(Cluster.newBuilder().build())
          .setRequestId("{REQUEST_ID}")
          .setActionOnFailedPrimaryWorkers(FailureAction.forNumber(0))
          .build();
  OperationFuture<Cluster, ClusterOperationMetadata> future =
      clusterControllerClient.createClusterOperationCallable().futureCall(request);
  // Do something.
  Cluster response = future.get();
} catch (CancellationException e) {
  // Exceeded the default RPC timeout without the Operation completing.
  // Library is no longer polling for the Operation status. Consider 
  // increasing the timeout.
}

LRO Timeouts

The polling operations have a default timeout that varies from service to service. The library will throw a java.util.concurrent.CancellationException with the message: Task was cancelled. if the timeout exceeds the operation. A CancellationException does not mean that the backend GCP Operation was cancelled. This exception is thrown from the client library when it has exceeded the total timeout without receiving a successful status from the operation. Our client libraries respect the configured values set in the OperationTimedPollAlgorithm for each RPC.

Note: The client library handles the Operation’s polling mechanism for you. By default, there is no need to manually poll the status yourself.

Default LRO Values

Each LRO RPC has a set of pre-configured default values. You can find these values by searching in each Client’s StubSettings‘s class. The default LRO settings are initialized inside the initDefaults() method in the nested Builder class.

For example, in google-cloud-aiplatform v3.24.0, the default OperationTimedPollAlgorithm has these default values:

OperationTimedPollAlgorithm.create(
    RetrySettings.newBuilder()
        .setInitialRetryDelay(Duration.ofMillis(5000L))
        .setRetryDelayMultiplier(1.5)
        .setMaxRetryDelay(Duration.ofMillis(45000L))
        .setInitialRpcTimeout(Duration.ZERO)
        .setRpcTimeoutMultiplier(1.0)
        .setMaxRpcTimeout(Duration.ZERO)
        .setTotalTimeout(Duration.ofMillis(300000L))
        .build())

Both retries and LROs share the same RetrySettings class. Note the corresponding link:

  • Total Timeout (Max Time allowed for polling): 5 minutes
  • Initial Retry Delay (Initial delay before first poll): 5 seconds
  • Max Retry Delay (Maximum delay between each poll): 45 seconds
  • Retry Delay Multiplier (Multiplier value to increase the poll delay): 1.5

The RPC Timeout values have no use in LROs and can be omitted or set to the default values (Duration.ZERO for Timeouts or 1.0 for the multiplier).

Configuring LRO Timeouts

To configure the LRO values, create an OperationTimedPollAlgorithm object and update the RPC’s polling algorithm. For example:

ClusterControllerSettings.Builder settingsBuilder = ClusterControllerSettings.newBuilder();
TimedRetryAlgorithm timedRetryAlgorithm = OperationTimedPollAlgorithm.create(
        RetrySettings.newBuilder()
                .setInitialRetryDelay(Duration.ofMillis(500L))
                .setRetryDelayMultiplier(1.5)
                .setMaxRetryDelay(Duration.ofMillis(5000L))
                .setInitialRpcTimeout(Duration.ZERO) // ignored
                .setRpcTimeoutMultiplier(1.0) // ignored
                .setMaxRpcTimeout(Duration.ZERO) // ignored
                .setTotalTimeout(Duration.ofHours(24L))	// set polling timeout to 24 hours
                .build());
settingsBuilder.createClusterOperationSettings()
        .setPollingAlgorithm(timedRetryAlgorithm);
ClusterControllerClient clusterControllerClient = ClusterControllerClient.create(settingsBuilder.build());

Note: The configuration above only modifies the LRO values for the createClusterOperation RPC. The other RPCs in the Client will still use each RPC’s pre-configured LRO values.

Managing Dependencies

If you are using more than one Google Cloud client library, we recommend you use one of our Bill of Material (BOM) artifacts to help manage dependency versions. For more information, see Using the Cloud Client Libraries.

Java Versions

Java 8 or above is required for using the clients in this repository.

Supported Platforms

Clients in this repository use either HTTP or gRPC for the transport layer. All HTTP-based clients should work in all environments.

For clients that use gRPC, the supported platforms are constrained by the platforms that Forked Tomcat Native supports, which for architectures means only x86_64, and for operating systems means Mac OS X, Windows, and Linux. Additionally, gRPC constrains the use of platforms with threading restrictions.

Thus, the following are not supported:

  • Android
    • Consider Firebase, which includes many of these APIs.
    • It is possible to use these libraries in many cases, although it is unsupported. You can find examples, such as this one, in this example repository but consider the risks carefully before using these libraries in an application.
  • Raspberry Pi (since it runs on the ARM architecture)
  • Google App Engine Standard Java 7

The following environments should work (among others):

  • standalone Windows on x86_64
  • standalone Mac OS X on x86_64
  • standalone Linux on x86_64
  • Google Compute Engine (GCE)
  • Google Container Engine (GKE)
  • Google App Engine Standard Java 8 (GAE Std J8)
  • Google App Engine Flex (GAE Flex)
  • Alpine Linux (Java 11+)

Testing

This library provides tools to help write tests for code that uses google-cloud services.

See TESTING to read more about using our testing helpers.

Versioning

This library follows Semantic Versioning, with some additional qualifications:

  1. Components marked with @BetaApi or @Experimental are considered to be “0.x” features inside a “1.x” library. This means they can change between minor and patch releases in incompatible ways. These features should not be used by any library “B” that itself has consumers, unless the components of library B that use @BetaApi features are also marked with @BetaApi. Features marked as @BetaApi are on a path to eventually become “1.x” features with the marker removed.

    Special exception for google-cloud-java: google-cloud-java is allowed to depend on @BetaApi features in gax-java without declaring the consuming code @BetaApi, because gax-java and google-cloud-java move in step with each other. For this reason, gax-java should not be used independently of google-cloud-java.

  2. Components marked with @InternalApi are technically public, but only because of the limitations of Java’s access modifiers. For the purposes of semver, they should be considered private.

  3. Interfaces marked with @InternalExtensionOnly are public, but should only be implemented by internal classes. For the purposes of semver, we reserve the right to add to these interfaces without default implementations (for Java 7).

Please note these clients are currently under active development. Any release versioned 0.x.y is subject to backwards incompatible changes at any time.

Stable

Libraries defined at a Stable quality level are expected to be stable and all updates in the libraries are guaranteed to be backwards-compatible. Any backwards-incompatible changes will lead to the major version increment (1.x.y -> 2.0.0).

Preview

Libraries defined at a Preview quality level are still a work-in-progress and are more likely to get backwards-incompatible updates. Additionally, it’s possible for Preview libraries to get deprecated and deleted before ever being promoted to Preview or Stable.

IDE Plugins

If you’re using IntelliJ or Eclipse, you can add client libraries to your project using these IDE plugins:

  • Cloud Tools for IntelliJ
  • Cloud Tools for Eclipse

Besides adding client libraries, the plugins provide additional functionality, such as service account key management. Refer to the documentation for each plugin for more details.

These client libraries can be used on App Engine standard for Java 8 runtime and App Engine flexible (including the Compat runtime). Most of the libraries do not work on the App Engine standard for Java 7 runtime. However, Datastore, Storage, and Bigquery should work.

Contributing

Contributions to this library are always welcome and highly encouraged.

See google-cloud‘s CONTRIBUTING documentation and the shared documentation for more information on how to get started.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See Code of Conduct for more information.

License

Apache 2.0 - See LICENSE for more information.

Dependencies

CVE IssuesActive
0
Scorecards Score
7.50
Test Coverage
No Data
Follows Semver
Yes
Github Stars
1,912
Dependenciestotal
12
DependenciesOutdated
2
DependenciesDeprecated
0
Threat Modelling
No Data
Repo Audits
No Data

Learn how to distribute com.google.api.grpc:proto-google-cloud-redis-v1 in your own private Maven registry

mvn install com.google.api.grpc:proto-google-cloud-redis-v1
Processing...
Done

Releases

Loading Version Data