timm

1.0.15last stable release 3 weeks ago
Complexity Score
High
Open Issues
77
Dependent Projects
399
Weekly Downloadsglobal
1,149,405

Downloads

Readme

PyTorch Image Models

  • What’s New
  • Introduction
  • Models
  • Features
  • Results
  • Getting Started (Documentation)
  • Train, Validation, Inference Scripts
  • Awesome PyTorch Resources
  • Licenses
  • Citing

What’s New

Feb 21, 2025

  • SigLIP 2 ViT image encoders added (https://huggingface.co/collections/timm/siglip-2-67b8e72ba08b09dd97aecaf9)
    • Variable resolution / aspect NaFlex versions are a WIP
  • Add ‘SO150M2’ ViT weights trained with SBB recipes, great results, better for ImageNet than previous attempt w/ less training.
    • vit_so150m2_patch16_reg1_gap_448.sbb_e200_in12k_ft_in1k - 88.1% top-1
    • vit_so150m2_patch16_reg1_gap_384.sbb_e200_in12k_ft_in1k - 87.9% top-1
    • vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k_ft_in1k - 87.3% top-1
    • vit_so150m2_patch16_reg4_gap_256.sbb_e200_in12k
  • Updated InternViT-300M ‘2.5’ weights
  • Release 1.0.15

Feb 1, 2025

  • FYI PyTorch 2.6 & Python 3.13 are tested and working w/ current main and released version of timm

Jan 27, 2025

  • Add Kron Optimizer (PSGD w/ Kronecker-factored preconditioner)
    • Code from https://github.com/evanatyourservice/kron_torch
    • See also https://sites.google.com/site/lixilinx/home/psgd

Jan 19, 2025

  • Fix loading of LeViT safetensor weights, remove conversion code which should have been deactivated
  • Add ‘SO150M’ ViT weights trained with SBB recipes, decent results, but not optimal shape for ImageNet-12k/1k pretrain/ft
    • vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k_ft_in1k - 86.7% top-1
    • vit_so150m_patch16_reg4_gap_384.sbb_e250_in12k_ft_in1k - 87.4% top-1
    • vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k
  • Misc typing, typo, etc. cleanup
  • 1.0.14 release to get above LeViT fix out

Jan 9, 2025

  • Add support to train and validate in pure bfloat16 or float16
  • wandb project name arg added by https://github.com/caojiaolong, use arg.experiment for name
  • Fix old issue w/ checkpoint saving not working on filesystem w/o hard-link support (e.g. FUSE fs mounts)
  • 1.0.13 release

Jan 6, 2025

  • Add torch.utils.checkpoint.checkpoint() wrapper in timm.models that defaults use_reentrant=False, unless TIMM_REENTRANT_CKPT=1 is set in env.

Dec 31, 2024

  • convnext_nano 384x384 ImageNet-12k pretrain & fine-tune. https://huggingface.co/models?search=convnext_nano%20r384
  • Add AIM-v2 encoders from https://github.com/apple/ml-aim, see on Hub: https://huggingface.co/models?search=timm%20aimv2
  • Add PaliGemma2 encoders from https://github.com/google-research/big_vision to existing PaliGemma, see on Hub: https://huggingface.co/models?search=timm%20pali2
  • Add missing L/14 DFN2B 39B CLIP ViT, vit_large_patch14_clip_224.dfn2b_s39b
  • Fix existing RmsNorm layer & fn to match standard formulation, use PT 2.5 impl when possible. Move old impl to SimpleNorm layer, it’s LN w/o centering or bias. There were only two timm models using it, and they have been updated.
  • Allow override of cache_dir arg for model creation
  • Pass through trust_remote_code for HF datasets wrapper
  • inception_next_atto model added by creator
  • Adan optimizer caution, and Lamb decoupled weighgt decay options
  • Some feature_info metadata fixed by https://github.com/brianhou0208
  • All OpenCLIP and JAX (CLIP, SigLIP, Pali, etc) model weights that used load time remapping were given their own HF Hub instances so that they work with hf-hub: based loading, and thus will work with new Transformers TimmWrapperModel

Nov 28, 2024

  • More optimizers
    • Add MARS optimizer (https://arxiv.org/abs/2411.10438, https://github.com/AGI-Arena/MARS)
    • Add LaProp optimizer (https://arxiv.org/abs/2002.04839, https://github.com/Z-T-WANG/LaProp-Optimizer)
    • Add masking from ‘Cautious Optimizers’ (https://arxiv.org/abs/2411.16085, https://github.com/kyleliang919/C-Optim) to Adafactor, Adafactor Big Vision, AdamW (legacy), Adopt, Lamb, LaProp, Lion, NadamW, RMSPropTF, SGDW
    • Cleanup some docstrings and type annotations re optimizers and factory
  • Add MobileNet-V4 Conv Medium models pretrained on in12k and fine-tuned in1k @ 384x384
    • https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k
    • https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k
    • https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k
    • https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k
  • Add small cs3darknet, quite good for the speed
    • https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k

Nov 12, 2024

  • Optimizer factory refactor
    • New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits
    • Add list_optimizers, get_optimizer_class, get_optimizer_info to reworked create_optimizer_v2 fn to explore optimizers, get info or class
    • deprecate optim.optim_factory, move fns to optim/_optim_factory.py and optim/_param_groups.py and encourage import via timm.optim
  • Add Adopt (https://github.com/iShohei220/adopt) optimizer
  • Add ‘Big Vision’ variant of Adafactor (https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer
  • Fix original Adafactor to pick better factorization dims for convolutions
  • Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit
  • dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks https://github.com/wojtke

Oct 31, 2024

Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat

Oct 19, 2024

  • Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from MengqingCao that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked.

Oct 16, 2024

  • Fix error on importing from deprecated path timm.models.registry, increased priority of existing deprecation warnings to be visible
  • Port weights of InternViT-300M (https://huggingface.co/OpenGVLab/InternViT-300M-448px) to timm as vit_intern300m_patch14_448

Oct 14, 2024

  • Pre-activation (ResNetV2) version of 18/18d/34/34d ResNet model defs added by request (weights pending)
  • Release 1.0.10

Oct 11, 2024

  • MambaOut (https://github.com/yuweihao/MambaOut) model & weights added. A cheeky take on SSM vision models w/o the SSM (essentially ConvNeXt w/ gating). A mix of original weights + custom variations & weights.
model img_size top1 top5 param_count mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k 384 87.506 98.428 101.66 mambaout_base_plus_rw.sw_e150_in12k_ft_in1k 288 86.912 98.236 101.66 mambaout_base_plus_rw.sw_e150_in12k_ft_in1k 224 86.632 98.156 101.66 mambaout_base_tall_rw.sw_e500_in1k 288 84.974 97.332 86.48 mambaout_base_wide_rw.sw_e500_in1k 288 84.962 97.208 94.45 mambaout_base_short_rw.sw_e500_in1k 288 84.832 97.27 88.83 mambaout_base.in1k 288 84.72 96.93 84.81 mambaout_small_rw.sw_e450_in1k 288 84.598 97.098 48.5 mambaout_small.in1k 288 84.5 96.974 48.49 mambaout_base_wide_rw.sw_e500_in1k 224 84.454 96.864 94.45 mambaout_base_tall_rw.sw_e500_in1k 224 84.434 96.958 86.48 mambaout_base_short_rw.sw_e500_in1k 224 84.362 96.952 88.83 mambaout_base.in1k 224 84.168 96.68 84.81 mambaout_small.in1k 224 84.086 96.63 48.49 mambaout_small_rw.sw_e450_in1k 224 84.024 96.752 48.5 mambaout_tiny.in1k 288 83.448 96.538 26.55 mambaout_tiny.in1k 224 82.736 96.1 26.55 mambaout_kobe.in1k 288 81.054 95.718 9.14 mambaout_kobe.in1k 224 79.986 94.986 9.14 mambaout_femto.in1k 288 79.848 95.14 7.3 mambaout_femto.in1k 224 78.87 94.408 7.3
  • SigLIP SO400M ViT fine-tunes on ImageNet-1k @ 378x378, added 378x378 option for existing SigLIP 384x384 models
    • vit_so400m_patch14_siglip_378.webli_ft_in1k - 89.42 top-1
    • vit_so400m_patch14_siglip_gap_378.webli_ft_in1k - 89.03
  • SigLIP SO400M ViT encoder from recent multi-lingual (i18n) variant, patch16 @ 256x256 (https://huggingface.co/timm/ViT-SO400M-16-SigLIP-i18n-256). OpenCLIP update pending.
  • Add two ConvNeXt ‘Zepto’ models & weights (one w/ overlapped stem and one w/ patch stem). Uses RMSNorm, smaller than previous ‘Atto’, 2.2M params.
    • convnext_zepto_rms_ols.ra4_e3600_r224_in1k - 73.20 top-1 @ 224
    • convnext_zepto_rms.ra4_e3600_r224_in1k - 72.81 @ 224

Sept 2024

  • Add a suite of tiny test models for improved unit tests and niche low-resource applications (https://huggingface.co/blog/rwightman/timm-tiny-test)
  • Add MobileNetV4-Conv-Small (0.5x) model (https://huggingface.co/posts/rwightman/793053396198664)
    • mobilenetv4_conv_small_050.e3000_r224_in1k - 65.81 top-1 @ 256, 64.76 @ 224
  • Add MobileNetV3-Large variants trained with MNV4 Small recipe
    • mobilenetv3_large_150d.ra4_e3600_r256_in1k - 81.81 @ 320, 80.94 @ 256
    • mobilenetv3_large_100.ra4_e3600_r224_in1k - 77.16 @ 256, 76.31 @ 224

Aug 21, 2024

  • Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models
model top1 top5 param_count img_size vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k 87.438 98.256 64.11 384 vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k 86.608 97.934 64.11 256 vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k 86.594 98.02 60.4 384 vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k 85.734 97.61 60.4 256
  • MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe
model top1 top5 param_count img_size resnet50d.ra4_e3600_r224_in1k 81.838 95.922 25.58 288 efficientnet_b1.ra4_e3600_r240_in1k 81.440 95.700 7.79 288 resnet50d.ra4_e3600_r224_in1k 80.952 95.384 25.58 224 efficientnet_b1.ra4_e3600_r240_in1k 80.406 95.152 7.79 240 mobilenetv1_125.ra4_e3600_r224_in1k 77.600 93.804 6.27 256 mobilenetv1_125.ra4_e3600_r224_in1k 76.924 93.234 6.27 224
  • Add SAM2 (HieraDet) backbone arch & weight loading support
  • Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k
model top1 top5 param_count hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k 84.912 97.260 35.01 hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k 84.560 97.106 35.01

Aug 8, 2024

  • Add RDNet (‘DenseNets Reloaded’, https://arxiv.org/abs/2403.19588), thanks Donghyun Kim

July 28, 2024

  • Add mobilenet_edgetpu_v2_m weights w/ ra4 mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
  • Release 1.0.8

July 26, 2024

  • More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models
model top1 top1_err top5 top5_err param_count img_size mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k 84.99 15.01 97.294 2.706 32.59 544 mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k 84.772 15.228 97.344 2.656 32.59 480 mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k 84.64 15.36 97.114 2.886 32.59 448 mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k 84.314 15.686 97.102 2.898 32.59 384 mobilenetv4_conv_aa_large.e600_r384_in1k 83.824 16.176 96.734 3.266 32.59 480 mobilenetv4_conv_aa_large.e600_r384_in1k 83.244 16.756 96.392 3.608 32.59 384 mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k 82.99 17.01 96.67 3.33 11.07 320 mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k 82.364 17.636 96.256 3.744 11.07 256
  • Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines)
model top1 top1_err top5 top5_err param_count img_size efficientnet_b0.ra4_e3600_r224_in1k 79.364 20.636 94.754 5.246 5.29 256 efficientnet_b0.ra4_e3600_r224_in1k 78.584 21.416 94.338 5.662 5.29 224 mobilenetv1_100h.ra4_e3600_r224_in1k 76.596 23.404 93.272 6.728 5.28 256 mobilenetv1_100.ra4_e3600_r224_in1k 76.094 23.906 93.004 6.996 4.23 256 mobilenetv1_100h.ra4_e3600_r224_in1k 75.662 24.338 92.504 7.496 5.28 224 mobilenetv1_100.ra4_e3600_r224_in1k 75.382 24.618 92.312 7.688 4.23 224
  • Prototype of set_input_size() added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
  • Improved support in swin for different size handling, in addition to set_input_size, always_partition and strict_img_size args have been added to __init__ to allow more flexible input size constraints
  • Fix out of order indices info for intermediate ‘Getter’ feature wrapper, check out or range indices for same.
  • Add several tiny < .5M param models for testing that are actually trained on ImageNet-1k
model top1 top1_err top5 top5_err param_count img_size crop_pct test_efficientnet.r160_in1k 47.156 52.844 71.726 28.274 0.36 192 1.0 test_byobnet.r160_in1k 46.698 53.302 71.674 28.326 0.46 192 1.0 test_efficientnet.r160_in1k 46.426 53.574 70.928 29.072 0.36 160 0.875 test_byobnet.r160_in1k 45.378 54.622 70.572 29.428 0.46 160 0.875 test_vit.r160_in1k 42.0 58.0 68.664 31.336 0.37 192 1.0 test_vit.r160_in1k 40.822 59.178 67.212 32.788 0.37 160 0.875
  • Fix vit reg token init, thanks Promisery
  • Other misc fixes

June 24, 2024

  • 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
model top1 top1_err top5 top5_err param_count img_size mobilenetv4_hybrid_large.ix_e600_r384_in1k 84.356 15.644 96.892 3.108 37.76 448 mobilenetv4_hybrid_large.ix_e600_r384_in1k 83.990 16.010 96.702 3.298 37.76 384 mobilenetv4_hybrid_medium.ix_e550_r384_in1k 83.394 16.606 96.760 3.240 11.07 448 mobilenetv4_hybrid_medium.ix_e550_r384_in1k 82.968 17.032 96.474 3.526 11.07 384 mobilenetv4_hybrid_medium.ix_e550_r256_in1k 82.492 17.508 96.278 3.722 11.07 320 mobilenetv4_hybrid_medium.ix_e550_r256_in1k 81.446 18.554 95.704 4.296 11.07 256
  • florence2 weight loading in DaViT model

June 12, 2024

  • MobileNetV4 models and initial set of timm trained weights added:
model top1 top1_err top5 top5_err param_count img_size mobilenetv4_hybrid_large.e600_r384_in1k 84.266 15.734 96.936 3.064 37.76 448 mobilenetv4_hybrid_large.e600_r384_in1k 83.800 16.200 96.770 3.230 37.76 384 mobilenetv4_conv_large.e600_r384_in1k 83.392 16.608 96.622 3.378 32.59 448 mobilenetv4_conv_large.e600_r384_in1k 82.952 17.048 96.266 3.734 32.59 384 mobilenetv4_conv_large.e500_r256_in1k 82.674 17.326 96.31 3.69 32.59 320 mobilenetv4_conv_large.e500_r256_in1k 81.862 18.138 95.69 4.31 32.59 256 mobilenetv4_hybrid_medium.e500_r224_in1k 81.276 18.724 95.742 4.258 11.07 256 mobilenetv4_conv_medium.e500_r256_in1k 80.858 19.142 95.768 4.232 9.72 320 mobilenetv4_hybrid_medium.e500_r224_in1k 80.442 19.558 95.38 4.62 11.07 224 mobilenetv4_conv_blur_medium.e500_r224_in1k 80.142 19.858 95.298 4.702 9.72 256 mobilenetv4_conv_medium.e500_r256_in1k 79.928 20.072 95.184 4.816 9.72 256 mobilenetv4_conv_medium.e500_r224_in1k 79.808 20.192 95.186 4.814 9.72 256 mobilenetv4_conv_blur_medium.e500_r224_in1k 79.438 20.562 94.932 5.068 9.72 224 mobilenetv4_conv_medium.e500_r224_in1k 79.094 20.906 94.77 5.23 9.72 224 mobilenetv4_conv_small.e2400_r224_in1k 74.616 25.384 92.072 7.928 3.77 256 mobilenetv4_conv_small.e1200_r224_in1k 74.292 25.708 92.116 7.884 3.77 256 mobilenetv4_conv_small.e2400_r224_in1k 73.756 26.244 91.422 8.578 3.77 224 mobilenetv4_conv_small.e1200_r224_in1k 73.454 26.546 91.34 8.66 3.77 224
  • Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
  • ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
  • OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.

May 14, 2024

  • Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
  • Add Hiera models from Meta (https://github.com/facebookresearch/hiera).
  • Add normalize= flag for transforms, return non-normalized torch.Tensor with original dytpe (for chug)
  • Version 1.0.3 release

May 11, 2024

  • Searching for Better ViT Baselines (For the GPU Poor) weights and vit variants released. Exploring model shapes between Tiny and Base.
model top1 top5 param_count img_size vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k 86.202 97.874 64.11 256 vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k 85.418 97.48 60.4 256 vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k 84.322 96.812 63.95 256 vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k 83.906 96.684 60.23 256 vit_base_patch16_rope_reg1_gap_256.sbb_in1k 83.866 96.67 86.43 256 vit_medium_patch16_rope_reg1_gap_256.sbb_in1k 83.81 96.824 38.74 256 vit_betwixt_patch16_reg4_gap_256.sbb_in1k 83.706 96.616 60.4 256 vit_betwixt_patch16_reg1_gap_256.sbb_in1k 83.628 96.544 60.4 256 vit_medium_patch16_reg4_gap_256.sbb_in1k 83.47 96.622 38.88 256 vit_medium_patch16_reg1_gap_256.sbb_in1k 83.462 96.548 38.88 256 vit_little_patch16_reg4_gap_256.sbb_in1k 82.514 96.262 22.52 256 vit_wee_patch16_reg1_gap_256.sbb_in1k 80.256 95.360 13.42 256 vit_pwee_patch16_reg1_gap_256.sbb_in1k 80.072 95.136 15.25 256 vit_mediumd_patch16_reg4_gap_256.sbb_in12k N/A N/A 64.11 256 vit_betwixt_patch16_reg4_gap_256.sbb_in12k N/A N/A 60.4 256
  • AttentionExtract helper added to extract attention maps from timm models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949
  • forward_intermediates() API refined and added to more models including some ConvNets that have other extraction methods.
  • 1017 of 1047 model architectures support features_only=True feature extraction. Remaining 34 architectures can be supported but based on priority requests.
  • Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used.

April 11, 2024

  • Prepping for a long overdue 1.0 release, things have been stable for a while now.
  • Significant feature that’s been missing for a while, features_only=True support for ViT models with flat hidden states or non-std module layouts (so far covering 'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*')
  • Above feature support achieved through a new forward_intermediates() API that can be used with a feature wrapping module or directly.
model = timm.create_model('vit_base_patch16_224')
final_feat, intermediates = model.forward_intermediates(input) 
output = model.forward_head(final_feat)  # pooling + classifier head

print(final_feat.shape)
torch.Size([2, 197, 768])

for f in intermediates:
    print(f.shape)
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])

print(output.shape)
torch.Size([2, 1000])
model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,))
output = model(torch.randn(2, 3, 512, 512))

for o in output:    
    print(o.shape)   
torch.Size([2, 768, 32, 32])
torch.Size([2, 768, 32, 32])
  • TinyCLIP vision tower weights added, thx Thien Tran

Feb 19, 2024

  • Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT
  • HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by SeeFun
  • Removed setup.py, moved to pyproject.toml based build supported by PDM
  • Add updated model EMA impl using _for_each for less overhead
  • Support device args in train script for non GPU devices
  • Other misc fixes and small additions
  • Min supported Python version increased to 3.8
  • Release 0.9.16

Introduction

PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

The work of many others is present here. I’ve tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.

Features

Models

All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated.

  • Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
  • BEiT - https://arxiv.org/abs/2106.08254
  • Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
  • Bottleneck Transformers - https://arxiv.org/abs/2101.11605
  • CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
  • CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
  • CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
  • ConvNeXt - https://arxiv.org/abs/2201.03545
  • ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
  • ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
  • CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
  • DeiT - https://arxiv.org/abs/2012.12877
  • DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
  • DenseNet - https://arxiv.org/abs/1608.06993
  • DLA - https://arxiv.org/abs/1707.06484
  • DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
  • EdgeNeXt - https://arxiv.org/abs/2206.10589
  • EfficientFormer - https://arxiv.org/abs/2206.01191
  • EfficientNet (MBConvNet Family)
    • EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
    • EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
    • EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
    • EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
    • EfficientNet V2 - https://arxiv.org/abs/2104.00298
    • FBNet-C - https://arxiv.org/abs/1812.03443
    • MixNet - https://arxiv.org/abs/1907.09595
    • MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
    • MobileNet-V2 - https://arxiv.org/abs/1801.04381
    • Single-Path NAS - https://arxiv.org/abs/1904.02877
    • TinyNet - https://arxiv.org/abs/2010.14819
  • EfficientViT (MIT) - https://arxiv.org/abs/2205.14756
  • EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027
  • EVA - https://arxiv.org/abs/2211.07636
  • EVA-02 - https://arxiv.org/abs/2303.11331
  • FastViT - https://arxiv.org/abs/2303.14189
  • FlexiViT - https://arxiv.org/abs/2212.08013
  • FocalNet (Focal Modulation Networks) - https://arxiv.org/abs/2203.11926
  • GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
  • GhostNet - https://arxiv.org/abs/1911.11907
  • GhostNet-V2 - https://arxiv.org/abs/2211.12905
  • gMLP - https://arxiv.org/abs/2105.08050
  • GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
  • Halo Nets - https://arxiv.org/abs/2103.12731
  • HGNet / HGNet-V2 - TBD
  • HRNet - https://arxiv.org/abs/1908.07919
  • InceptionNeXt - https://arxiv.org/abs/2303.16900
  • Inception-V3 - https://arxiv.org/abs/1512.00567
  • Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
  • Lambda Networks - https://arxiv.org/abs/2102.08602
  • LeViT (Vision Transformer in ConvNet’s Clothing) - https://arxiv.org/abs/2104.01136
  • MambaOut - https://arxiv.org/abs/2405.07992
  • MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
  • MetaFormer (PoolFormer-v2, ConvFormer, CAFormer) - https://arxiv.org/abs/2210.13452
  • MLP-Mixer - https://arxiv.org/abs/2105.01601
  • MobileCLIP - https://arxiv.org/abs/2311.17049
  • MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
    • FBNet-V3 - https://arxiv.org/abs/2006.02049
    • HardCoRe-NAS - https://arxiv.org/abs/2102.11646
    • LCNet - https://arxiv.org/abs/2109.15099
  • MobileNetV4 - https://arxiv.org/abs/2404.10518
  • MobileOne - https://arxiv.org/abs/2206.04040
  • MobileViT - https://arxiv.org/abs/2110.02178
  • MobileViT-V2 - https://arxiv.org/abs/2206.02680
  • MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
  • NASNet-A - https://arxiv.org/abs/1707.07012
  • NesT - https://arxiv.org/abs/2105.12723
  • Next-ViT - https://arxiv.org/abs/2207.05501
  • NFNet-F - https://arxiv.org/abs/2102.06171
  • NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
  • PNasNet - https://arxiv.org/abs/1712.00559
  • PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
  • Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
  • PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
  • RDNet (DenseNets Reloaded) - https://arxiv.org/abs/2403.19588
  • RegNet - https://arxiv.org/abs/2003.13678
  • RegNetZ - https://arxiv.org/abs/2103.06877
  • RepVGG - https://arxiv.org/abs/2101.03697
  • RepGhostNet - https://arxiv.org/abs/2211.06088
  • RepViT - https://arxiv.org/abs/2307.09283
  • ResMLP - https://arxiv.org/abs/2105.03404
  • ResNet/ResNeXt
    • ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
    • ResNeXt - https://arxiv.org/abs/1611.05431
    • ‘Bag of Tricks’ / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
    • Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
    • Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
    • ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
    • Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
    • ResNet-RS - https://arxiv.org/abs/2103.07579
  • Res2Net - https://arxiv.org/abs/1904.01169
  • ResNeSt - https://arxiv.org/abs/2004.08955
  • ReXNet - https://arxiv.org/abs/2007.00992
  • SelecSLS - https://arxiv.org/abs/1907.00837
  • Selective Kernel Networks - https://arxiv.org/abs/1903.06586
  • Sequencer2D - https://arxiv.org/abs/2205.01972
  • SigLIP (image encoder) - https://arxiv.org/abs/2303.15343
  • SigLIP 2 (image encoder) - https://arxiv.org/abs/2502.14786
  • Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
  • Swin Transformer - https://arxiv.org/abs/2103.14030
  • Swin Transformer V2 - https://arxiv.org/abs/2111.09883
  • Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
  • TResNet - https://arxiv.org/abs/2003.13630
  • Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
  • Visformer - https://arxiv.org/abs/2104.12533
  • Vision Transformer - https://arxiv.org/abs/2010.11929
  • ViTamin - https://arxiv.org/abs/2404.02132
  • VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
  • VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
  • Xception - https://arxiv.org/abs/1610.02357
  • Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
  • Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
  • XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681

Optimizers

To see full list of optimizers w/ descriptions: timm.optim.list_optimizers(with_description=True)

Included optimizers available via timm.optim.create_optimizer_v2 factory method:

  • adabelief an implementation of AdaBelief adapted from https://github.com/juntang-zhuang/Adabelief-Optimizer - https://arxiv.org/abs/2010.07468
  • adafactor adapted from FAIRSeq impl - https://arxiv.org/abs/1804.04235
  • adafactorbv adapted from Big Vision - https://arxiv.org/abs/2106.04560
  • adahessian by David Samuel - https://arxiv.org/abs/2006.00719
  • adamp and sgdp by Naver ClovAI - https://arxiv.org/abs/2006.08217
  • adan an implementation of Adan adapted from https://github.com/sail-sg/Adan - https://arxiv.org/abs/2208.06677
  • adopt ADOPT adapted from https://github.com/iShohei220/adopt - https://arxiv.org/abs/2411.02853
  • kron PSGD w/ Kronecker-factored preconditioner from https://github.com/evanatyourservice/kron_torch - https://sites.google.com/site/lixilinx/home/psgd
  • lamb an implementation of Lamb and LambC (w/ trust-clipping) cleaned up and modified to support use with XLA - https://arxiv.org/abs/1904.00962
  • laprop optimizer from https://github.com/Z-T-WANG/LaProp-Optimizer - https://arxiv.org/abs/2002.04839
  • lars an implementation of LARS and LARC (w/ trust-clipping) - https://arxiv.org/abs/1708.03888
  • lion and implementation of Lion adapted from https://github.com/google/automl/tree/master/lion - https://arxiv.org/abs/2302.06675
  • lookahead adapted from impl by Liam - https://arxiv.org/abs/1907.08610
  • madgrad an implementation of MADGRAD adapted from https://github.com/facebookresearch/madgrad - https://arxiv.org/abs/2101.11075
  • mars MARS optimizer from https://github.com/AGI-Arena/MARS - https://arxiv.org/abs/2411.10438
  • nadam an implementation of Adam w/ Nesterov momentum
  • nadamw an implementation of AdamW (Adam w/ decoupled weight-decay) w/ Nesterov momentum. A simplified impl based on https://github.com/mlcommons/algorithmic-efficiency
  • novograd by Masashi Kimura - https://arxiv.org/abs/1905.11286
  • radam by Liyuan Liu - https://arxiv.org/abs/1908.03265
  • rmsprop_tf adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour
  • sgdw and implementation of SGD w/ decoupled weight-decay
  • fused<name> optimizers by name with NVIDIA Apex installed
  • bnb<name> optimizers by name with BitsAndBytes installed
  • cadamw, clion, and more ‘Cautious’ optimizers from https://github.com/kyleliang919/C-Optim - https://arxiv.org/abs/2411.16085
  • adam, adamw, rmsprop, adadelta, adagrad, and sgd pass through to torch.optim implementations

Augmentations

  • Random Erasing from Zhun Zhong - https://arxiv.org/abs/1708.04896)
  • Mixup - https://arxiv.org/abs/1710.09412
  • CutMix - https://arxiv.org/abs/1905.04899
  • AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)
  • AugMix w/ JSD loss, JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well - https://arxiv.org/abs/1912.02781
  • SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data

Regularization

  • DropPath aka “Stochastic Depth” - https://arxiv.org/abs/1603.09382
  • DropBlock - https://arxiv.org/abs/1810.12890
  • Blur Pooling - https://arxiv.org/abs/1904.11486

Other

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others’ via PIP:

  • All models have a common default configuration interface and API for
    • accessing/changing the classifier - get_classifier and reset_classifier
    • doing a forward pass on just the features - forward_features (see documentation)
    • these makes it easy to write consistent network wrappers that work with any of the models
  • All models support multi-scale feature map extraction (feature pyramids) via create_model (see documentation)
    • create_model(name, features_only=True, out_indices=..., output_stride=...)
    • out_indices creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the C(i + 1) feature level.
    • output_stride creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this.
    • feature map channel counts, reduction level (stride) can be queried AFTER model creation via the .feature_info member
  • All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
  • High performance reference training, validation, and inference scripts that work in several process/GPU modes:
    • NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    • PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    • PyTorch w/ single GPU single process (AMP optional)
  • A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
  • A ‘Test Time Pool’ wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
  • Learning rate schedulers
    • Ideas adopted from
      • AllenNLP schedulers
      • FAIRseq lr_scheduler
      • SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983)
    • Schedulers include step, cosine w/ restarts, tanh w/ restarts, plateau
  • Space-to-Depth by mrT23 (https://arxiv.org/abs/1801.04590) – original paper?
  • Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets)
  • An extensive selection of channel and/or spatial attention modules:
    • Bottleneck Transformer - https://arxiv.org/abs/2101.11605
    • CBAM - https://arxiv.org/abs/1807.06521
    • Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667
    • Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151
    • Gather-Excite (GE) - https://arxiv.org/abs/1810.12348
    • Global Context (GC) - https://arxiv.org/abs/1904.11492
    • Halo - https://arxiv.org/abs/2103.12731
    • Involution - https://arxiv.org/abs/2103.06255
    • Lambda Layer - https://arxiv.org/abs/2102.08602
    • Non-Local (NL) - https://arxiv.org/abs/1711.07971
    • Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507
    • Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586
    • Split (SPLAT) - https://arxiv.org/abs/2004.08955
    • Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030

Results

Model validation results can be found in the results tables

Getting Started (Documentation)

The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome.

Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide by Chris Hughes is an extensive blog post covering many aspects of timm in detail.

timmdocs is an alternate set of documentation for timm. A big thanks to Aman Arora for his efforts creating timmdocs.

paperswithcode is a good resource for browsing the models within timm.

Train, Validation, Inference Scripts

The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See documentation.

Awesome PyTorch Resources

One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.

Object Detection, Instance and Semantic Segmentation

  • Detectron2 - https://github.com/facebookresearch/detectron2
  • Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch
  • EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch

Computer Vision / Image Augmentation

  • Albumentations - https://github.com/albumentations-team/albumentations
  • Kornia - https://github.com/kornia/kornia

Knowledge Distillation

  • RepDistiller - https://github.com/HobbitLong/RepDistiller
  • torchdistill - https://github.com/yoshitomo-matsubara/torchdistill

Metric Learning

  • PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning

Training / Frameworks

  • fastai - https://github.com/fastai/fastai

Licenses

Code

The code here is licensed Apache 2.0. I’ve taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I’ve made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I’ve linked the sources/references for various components in docstrings. If you think I’ve missed anything please create an issue.

Pretrained Weights

So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It’s not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It’s best to seek legal advice if you intend to use the pretrained weights in a commercial product.

Pretrained on more than ImageNet

Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.

Citing

BibTeX

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}

Latest DOI

Dependencies

CVE IssuesActive
0
Scorecards Score
No Data
Test Coverage
No Data
Follows Semver
No
Github Stars
33,476
Dependenciestotal
5
DependenciesOutdated
0
DependenciesDeprecated
0
Threat Modelling
No
Repo Audits
No

Learn how to distribute timm in your own private PyPI registry

pip install timm
Processing...
Done

66 Releases

PyPI on Cloudsmith

Getting started with PyPI on Cloudsmith is fast and easy.