Keywords
License
- MIT
- Yesattribution
- Permissivelinking
- Permissivedistribution
- Permissivemodification
- Nopatent grant
- Yesprivate use
- Permissivesublicensing
- Notrademark grant
Downloads
Readme
.. raw:: html
<p align="center">
<img src="https://i.ibb.co/GtxGS8m/Segmentation-Models-V1-Side-3-1.png">
<b>Python library with Neural Networks for Image Segmentation based on <a href=https://www.keras.io>Keras</a> and <a href=https://www.tensorflow.org>TensorFlow</a>.
</b>
<br></br>
<a href="https://badge.fury.io/py/segmentation-models" alt="PyPI">
<img src="https://badge.fury.io/py/segmentation-models.svg" /></a>
<a href="https://segmentation-models.readthedocs.io/en/latest/?badge=latest" alt="Documentation">
<img src="https://readthedocs.org/projects/segmentation-models/badge/?version=latest" /></a>
<a href="https://travis-ci.com/qubvel/segmentation_models" alt="Build Status">
<img src="https://travis-ci.com/qubvel/segmentation_models.svg?branch=master" /></a>
</p>
The main features of this library are:
- High level API (just two lines of code to create model for segmentation)
- 4 models architectures for binary and multi-class image segmentation (including legendary Unet)
- 25 available backbones for each architecture
- All backbones have pre-trained weights for faster and better convergence
- Helpful segmentation losses (Jaccard, Dice, Focal) and metrics (IoU, F-score)
Important note
Some models of version ``1.*`` are not compatible with previously trained models,
if you have such models and want to load them - roll back with:
$ pip install -U segmentation-models==0.2.1
Table of Contents
- `Quick start`_
- `Simple training pipeline`_
- `Examples`_
- `Models and Backbones`_
- `Installation`_
- `Documentation`_
- `Change log`_
- `Citing`_
- `License`_
Quick start
~~~~~~~~~~~
Library is build to work together with Keras and TensorFlow Keras frameworks
.. code:: python
import segmentation_models as sm
# Segmentation Models: using `keras` framework.
By default it tries to import ``keras``, if it is not installed, it will try to start with ``tensorflow.keras`` framework.
There are several ways to choose framework:
- Provide environment variable ``SM_FRAMEWORK=keras`` / ``SM_FRAMEWORK=tf.keras`` before import ``segmentation_models``
- Change framework ``sm.set_framework('keras')`` / ``sm.set_framework('tf.keras')``
You can also specify what kind of ``image_data_format`` to use, segmentation-models works with both: ``channels_last`` and ``channels_first``.
This can be useful for further model conversion to Nvidia TensorRT format or optimizing model for cpu/gpu computations.
.. code:: python
import keras
# or from tensorflow import keras
keras.backend.set_image_data_format('channels_last')
# or keras.backend.set_image_data_format('channels_first')
Created segmentation model is just an instance of Keras Model, which can be build as easy as:
.. code:: python
model = sm.Unet()
Depending on the task, you can change the network architecture by choosing backbones with fewer or more parameters and use pretrainded weights to initialize it:
.. code:: python
model = sm.Unet('resnet34', encoder_weights='imagenet')
Change number of output classes in the model (choose your case):
.. code:: python
# binary segmentation (this parameters are default when you call Unet('resnet34')
model = sm.Unet('resnet34', classes=1, activation='sigmoid')
.. code:: python
# multiclass segmentation with non overlapping class masks (your classes + background)
model = sm.Unet('resnet34', classes=3, activation='softmax')
.. code:: python
# multiclass segmentation with independent overlapping/non-overlapping class masks
model = sm.Unet('resnet34', classes=3, activation='sigmoid')
Change input shape of the model:
.. code:: python
# if you set input channels not equal to 3, you have to set encoder_weights=None
# how to handle such case with encoder_weights='imagenet' described in docs
model = Unet('resnet34', input_shape=(None, None, 6), encoder_weights=None)
Simple training pipeline
.. code:: python
import segmentation_models as sm
BACKBONE = 'resnet34'
preprocess_input = sm.get_preprocessing(BACKBONE)
# load your data
x_train, y_train, x_val, y_val = load_data(...)
# preprocess input
x_train = preprocess_input(x_train)
x_val = preprocess_input(x_val)
# define model
model = sm.Unet(BACKBONE, encoder_weights='imagenet')
model.compile(
'Adam',
loss=sm.losses.bce_jaccard_loss,
metrics=[sm.metrics.iou_score],
)
# fit model
# if you use data generator use model.fit_generator(...) instead of model.fit(...)
# more about `fit_generator` here: https://keras.io/models/sequential/#fit_generator
model.fit(
x=x_train,
y=y_train,
batch_size=16,
epochs=100,
validation_data=(x_val, y_val),
)
Same manipulations can be done with Linknet
, PSPNet
and FPN
. For more detailed information about models API and use cases Read the Docs <https://segmentation-models.readthedocs.io/en/latest/>
__.
Examples
Models training examples:
- [Jupyter Notebook] Binary segmentation (`cars`) on CamVid dataset `here <https://github.com/qubvel/segmentation_models/blob/master/examples/binary%20segmentation%20(camvid).ipynb>`__.
- [Jupyter Notebook] Multi-class segmentation (`cars`, `pedestrians`) on CamVid dataset `here <https://github.com/qubvel/segmentation_models/blob/master/examples/multiclass%20segmentation%20(camvid).ipynb>`__.
Models and Backbones
Models
Unet <https://arxiv.org/abs/1505.04597>
__FPN <http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf>
__Linknet <https://arxiv.org/abs/1707.03718>
__PSPNet <https://arxiv.org/abs/1612.01105>
__
============= ============== Unet Linknet ============= ============== |unet_image| |linknet_image| ============= ==============
============= ============== PSPNet FPN ============= ============== |psp_image| |fpn_image| ============= ==============
.. _Unet: https://github.com/qubvel/segmentation_models/blob/readme/LICENSE .. _Linknet: https://arxiv.org/abs/1707.03718 .. _PSPNet: https://arxiv.org/abs/1612.01105 .. _FPN: http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf
.. |unet_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/unet.png .. |linknet_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/linknet.png .. |psp_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/pspnet.png .. |fpn_image| image:: https://github.com/qubvel/segmentation_models/blob/master/images/fpn.png
Backbones
.. table::
============= =====
Type Names
============= =====
VGG ``'vgg16' 'vgg19'``
ResNet ``'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152'``
SE-ResNet ``'seresnet18' 'seresnet34' 'seresnet50' 'seresnet101' 'seresnet152'``
ResNeXt ``'resnext50' 'resnext101'``
SE-ResNeXt ``'seresnext50' 'seresnext101'``
SENet154 ``'senet154'``
DenseNet ``'densenet121' 'densenet169' 'densenet201'``
Inception ``'inceptionv3' 'inceptionresnetv2'``
MobileNet ``'mobilenet' 'mobilenetv2'``
EfficientNet ``'efficientnetb0' 'efficientnetb1' 'efficientnetb2' 'efficientnetb3' 'efficientnetb4' 'efficientnetb5' efficientnetb6' efficientnetb7'``
============= =====
.. epigraph::
All backbones have weights trained on 2012 ILSVRC ImageNet dataset (encoder_weights='imagenet'
).
Installation
**Requirements**
1) python 3
2) keras >= 2.2.0 or tensorflow >= 1.13
3) keras-applications >= 1.0.7, <=1.0.8
4) image-classifiers == 1.0.*
5) efficientnet == 1.0.*
**PyPI stable package**
.. code:: bash
$ pip install -U segmentation-models
**PyPI latest package**
.. code:: bash
$ pip install -U --pre segmentation-models
**Source latest version**
.. code:: bash
$ pip install git+https://github.com/qubvel/segmentation_models
Documentation
Latest documentation is avaliable on Read the Docs <https://segmentation-models.readthedocs.io/en/latest/>
__
Change Log
To see important changes between versions look at CHANGELOG.md_
Citing
~~~~~~~~
.. code::
@misc{Yakubovskiy:2019,
Author = {Pavel Iakubovskii},
Title = {Segmentation Models},
Year = {2019},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/qubvel/segmentation_models}}
}
License
~~~~~~~
Project is distributed under `MIT Licence`_.
.. _CHANGELOG.md: https://github.com/qubvel/segmentation_models/blob/master/CHANGELOG.md
.. _`MIT Licence`: https://github.com/qubvel/segmentation_models/blob/master/LICENSE