Keywords
License
- MIT
- Yesattribution
- Permissivelinking
- Permissivedistribution
- Permissivemodification
- Nopatent grant
- Yesprivate use
- Permissivesublicensing
- Notrademark grant
Downloads
Readme
PyTorch is all you need!
GraphGallery
GraphGallery is a gallery for benchmarking Graph Neural Networks (GNNs) based on pure PyTorch backend. Alteratively, Pytorch Geometric (PyG) and Deep Graph Library (DGL) backend are also available in GraphGallery to facilitate your implementations.
đš NEWS
- November 20, 2021: We now no longer support
TensorFlow
backend. - November 20, 2021: The module
graphgallery.attack
is deprecated, users may refer to GraphWar for more information.
đ Installation
Please make sure you have installed PyTorch. Also, Pytorch Geometric (PyG) and Deep Graph Library (DGL) are alternative choices.
Install from source:
# Recommended
git clone https://github.com/EdisonLeeeee/GraphGallery.git && cd GraphGallery
pip install -e . --verbose
where -e
means âeditableâ mode so you donât have to reinstall every time you make changes.
NOTE: GraphGallery is a frequently updated package and DO NOT install GraphGallery with pip
, weâre currently working on releasing a binary distribution on PyPI
, stay tuned!
đ€ Implementations
In detail, the following methods are currently implemented:
Node Classification
Method Author Paper PyTorch PyG DGL ChebyNet MichaĂ«l Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (NeurIPSâ16) :heavy_check_mark: GCN Thomas N. Kipf et al. Semi-Supervised Classification with Graph Convolutional Networks (ICLRâ17) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: GraphSAGE William L. Hamilton et al. Inductive Representation Learning on Large Graphs (NeurIPSâ17) :heavy_check_mark: :heavy_check_mark: FastGCN Jie Chen et al. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling (ICLRâ18) :heavy_check_mark: GAT Petar VeliÄkoviÄ et al. Graph Attention Networks (ICLRâ18) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: SGC Felix Wu et al. Simplifying Graph Convolutional Networks (ICLRâ19) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: GWNN Bingbing Xu et al. Graph Wavelet Neural Network (ICLRâ19) :heavy_check_mark: ClusterGCN Wei-Lin Chiang et al. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks (KDDâ19) :heavy_check_mark: DAGNN Meng Liu et al. Towards Deeper Graph Neural Networks (KDDâ20) :heavy_check_mark: :heavy_check_mark: GDC Johannes Klicpera et al. Diffusion Improves Graph Learning (NeurIPSâ19) :heavy_check_mark: TAGCN Jian Du et al. Topology Adaptive Graph Convolutional Networks (arxivâ17) :heavy_check_mark: APPNP, PPNP Johannes Klicpera et al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLRâ19) :heavy_check_mark: :heavy_check_mark: PDN Benedek Rozemberczki et al. Pathfinder Discovery Networks for Neural Message Passing (ICLRâ21) :heavy_check_mark: SSGC Zhu et al. Simple Spectral Graph Convolution (ICLRâ21) :heavy_check_mark: AGNN Kiran K. Thekumparampil al. Attention-based Graph Neural Network for semi-supervised learning (ICLRâ18 openreview) :heavy_check_mark: ARMA Bianchi et al. Graph Neural Networks with convolutional ARMA filters (Arxivâ19) GraphMLP Yang Hu et al. Graph-MLP: Node Classification without Message Passing in Graph (Arxivâ21) :heavy_check_mark: LGC, EGC, hLGC Luca Pasa et al. Simple Graph Convolutional Networks (Arxivâ21) :heavy_check_mark: GRAND Wenzheng Feng et al. Graph Random Neural Network for Semi-Supervised Learning on Graphs (NeurIPSâ20) :heavy_check_mark: AlaGCN, AlaGAT Yiqing Xie et al. When Do GNNs Work: Understanding and Improving Neighborhood Aggregation (IJCAIâ20) :heavy_check_mark: JKNet Keyulu Xu et al. Representation Learning on Graphs with Jumping Knowledge Networks (ICMLâ18) :heavy_check_mark: MixHop Sami Abu-El-Haija et al. MixHop: Higher-Order Graph Convolutional Architecturesvia Sparsified Neighborhood Mixing (ICMLâ19) :heavy_check_mark: DropEdge Yu Rong et al. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification (ICMLâ20) :heavy_check_mark: Node2Grids Dalong Yang et al. Node2Grids: A Cost-Efficient Uncoupled Training Framework for Large-Scale Graph Learning (CIKMâ21) :heavy_check_mark: RobustGCN Dingyuan Zhu et al. Robust Graph Convolutional Networks Against Adversarial Attacks (KDDâ19) :heavy_check_mark: :heavy_check_mark: SBVAT, OBVAT Zhijie Deng et al. Batch Virtual Adversarial Training for Graph Convolutional Networks (ICMLâ19) :heavy_check_mark: SimPGCN Wei Jin et al. Node Similarity Preserving Graph Convolutional Networks (WSDMâ21) :heavy_check_mark: GraphVAT Fuli Feng et al. Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure (TKDEâ19) :heavy_check_mark: LATGCN Hongwei Jin et al. Latent Adversarial Training of Graph Convolution Networks (ICML@LRGSDâ19) :heavy_check_mark: DGAT Weibo Hu et al. Robust graph convolutional networks with directional graph adversarial training (Applied Intelligenceâ19) :heavy_check_mark: MedianGCN, TrimmedGCN Liang Chen et al. Understanding Structural Vulnerability in Graph Convolutional Networks :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:Graph Purification
The graph purification methods are universal for all models, just specify:
graph_transform="purification_method"
so, here we only give the examples of GCN
with purification methods, other models should work.
LinkPrediction
Method Author Paper PyTorch PyG DGL GAE, VGAE Thomas N. Kipf et al. Variational Graph Auto-Encoders (NeuIPSâ16) :heavy_check_mark: :heavy_check_mark:Node Embedding
The following methods are framework-agnostic.
Method Author Paper Deepwalk Bryan Perozzi et al. DeepWalk: Online Learning of Social Representations (KDDâ14) Node2vec Aditya Grover and Jure Leskovec node2vec: Scalable Feature Learning for Networks (KDDâ16) Node2vec+ Renming Liu et al. Accurately Modeling Biased Random Walks on Weighted Graphs Using Node2vec+ BANE Hong Yang et al. Binarized attributed network embedding (ICDMâ18)⥠Quick Start
Datasets
- Planetoid: a collection of widely used benchmark datasets in graph learning tasks, including âcoraâ, âciteseerrâ, âpubmedâ and ânellâ datasets.
- NPZDataset: a collection of graph datasets stored with numpy
.npz
format.
you can simply run dataset.available_datasets()
to see the available datasets, e.g.,:
from graphgallery.datasets import Planetoid
print(Planetoid.available_datasets())
more details please refer to GraphData.
Example of GCN (Node Classification Task)
It takes just a few lines of code.
import torch
import graphgallery
from graphgallery.datasets import Planetoid
from graphgallery.gallery import callbacks
data = Planetoid('cora', root="~/GraphData/datasets/", verbose=True)
graph = data.graph
splits = data.split_nodes()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
graphgallery.set_backend("torch")
from graphgallery.gallery.nodeclas import GCN
trainer = GCN(device=device, seed=123).setup_graph(graph, feat_transform="normalize_feat").build()
cb = callbacks.ModelCheckpoint('model.pth', monitor='val_accuracy')
trainer.fit(splits.train_nodes, splits.val_nodes, verbose=1, callbacks=[cb])
results = trainer.evaluate(splits.test_nodes)
print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
Example of GAE (Link Prediction Task)
import torch
import graphgallery
from graphgallery.gallery import callbacks
from graphgallery.datasets import Planetoid
data = Planetoid('cora', root="~/GraphData/datasets/", verbose=True)
graph = data.graph
splits = data.split_edges(random_state=15)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
graphgallery.set_backend("torch")
from graphgallery.gallery.linkpred import GAE
trainer = GAE(device=device, seed=123).setup_graph(graph).build()
cb = callbacks.ModelCheckpoint('model.pth', monitor='val_ap')
trainer.fit(splits.train_pos_edge_index,
val_data=(splits.val_pos_edge_index, splits.val_neg_edge_index),
verbose=1, callbacks=[cb])
results = trainer.evaluate((splits.test_pos_edge_index, splits.test_neg_edge_index))
print(results)
If you have any troubles, you can simply run trainer.help()
for more information.
Other Backends
>>> import graphgallery
# Default: PyTorch backend
>>> graphgallery.backend()
PyTorch 1.9.0+cu111 Backend
# Switch to PyTorch Geometric backend
>>> graphgallery.set_backend("pyg")
# Switch to DGL PyTorch backend
>>> graphgallery.set_backend("dgl")
# Switch to PyTorch backend
>>> graphgallery.set_backend("th") # "torch", "pytorch"
But your codes donât even need to change.
â How to add your datasets
This is motivated by gnn-benchmark
from graphgallery.data import Graph
# Load the adjacency matrix A, attribute (feature) matrix X and labels vector y
# A - scipy.sparse.csr_matrix of shape [num_nodes, num_nodes]
# X - scipy.sparse.csr_matrix or numpy.ndarray of shape [num_nodes, num_feats]
# y - numpy.ndarray of shape [num_nodes]
mydataset = Graph(adj_matrix=A, attr_matrix=X, label=y)
# save dataset
mydataset.to_npz('path/to/mydataset.npz')
# load dataset
mydataset = Graph.from_npz('path/to/mydataset.npz')
â Road Map
- Add PyTorch trainers support
- Add other frameworks (PyG and DGL) support
- set tensorflow as optional dependency when using graphgallery
- Add more GNN trainers
- Support for more tasks, e.g.,
graph Classification
andlink prediction
- Support for more types of graphs, e.g., Heterogeneous graph
- Add Docstrings and Documentation (Building)
- Comprehensive tutorials
â FAQ
Please fell free to contact me if you have any troubles.
đ Acknowledgement
This project is motivated by Pytorch Geometric, Stellargraph and DGL, etc., and the original implementations of the authors, thanks for their excellent works!
Cite
Please cite our paper (and the respective papers of the methods used) if you use this code in your own work:
@inproceedings{li2021graphgallery,
author = {Jintang Li and Kun Xu and Liang Chen and Zibin Zheng and Xiao Liu},
booktitle = {2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)},
title = {GraphGallery: A Platform for Fast Benchmarking and Easy Development of Graph Neural Networks Based Intelligent Software},
year = {2021},
pages = {13-16},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},
}