Keywords
License
- Apache-2.0
- Yesattribution
- Permissivelinking
- Permissivedistribution
- Permissivemodification
- Yespatent grant
- Yesprivate use
- Permissivesublicensing
- Notrademark grant
Downloads
Readme
dictionaryutils
python wrapper and metaschema for datadictionary. It can be used to:
- load a local dictionary to a python object.
- dump schemas to a file that can be uploaded to s3 as an artifact.
- load schema file from an url to a python object that can be used by services
Test for dictionary validity with Docker
Say you have a dictionary you are building locally and you want to see if it will pass the tests.
You can add a simple alias to your .bash_profile
to enable a quick test command:
testdict() { docker run --rm -v $(pwd):/dictionary quay.io/cdis/dictionaryutils:master; }
Then from the directory containing the gdcdictionary
directory run testdict
.
Generate simulated data with Docker
If you wish to generate fake simulated data you can also do that with dictionaryutils and the data-simulator.
simdata() { docker run --rm -v $(pwd):/dictionary -v $(pwd)/simdata:/simdata quay.io/cdis/dictionaryutils:master /bin/sh -c "cd /dictionary && python setup.py install --force; python /src/datasimulator/bin/data-simulator simulate --path /simdata/ $*; export SUCCESS=$?; rm -rf build dictionaryutils dist gdcdictionary.egg-info; chmod -R a+rwX /simdata; exit $SUCCESS"; }
simdataurl() { docker run --rm -v $(pwd):/dictionary -v $(pwd)/simdata:/simdata quay.io/cdis/dictionaryutils:master /bin/sh -c "python /src/datasimulator/bin/data-simulator simulate --path /simdata/ $*; chmod -R a+rwX /simdata"; }
Then from the directory containing the gdcdictionary
directory run simdata
and a folder will be created called simdata
with the results of the simulator run. You can also pass in additional arguments to the data-simulator script such as simdata --max_samples 10
.
The --max_samples
argument will define a default number of nodes to simulate, but you can override it using the --node_num_instances_file
argument. For example, if you create the following instances.json
:
{
"case": 100,
"demographic": 100
}
Then run the following:
docker run --rm -v $(pwd):/dictionary -v $(pwd)/simdata:/simdata quay.io/cdis/dictionaryutils:master /bin/sh -c "cd /dictionary && python setup.py install --force; python /src/datasimulator/bin/data-simulator simulate --path /simdata/ --program workshop --project project1 --max_samples 10 --node_num_instances_file instances.json; export SUCCESS=$?; rm -rf build dictionaryutils dist gdcdictionary.egg-info; chmod -R a+rwX /simdata; exit $SUCCESS";
Then you’ll get 100 each of case
and demographic
nodes and 10 each of everything else. Note that the above example also defines program
and project
names.
You can also run the simulator for an arbitrary json url by using simdataurl --url https://datacommons.example.com/schema.json
.
Use dictionaryutils to load a dictionary
from dictionaryutils import DataDictionary
dict_fetch_from_remote = DataDictionary(url=URL_FOR_THE_JSON)
dict_loaded_locally = DataDictionary(root_dir=PATH_TO_SCHEMA_DIR)
Use dictionaryutils to dump a dictionary
import json
from dictionaryutils import dump_schemas_from_dir
with open('dump.json', 'w') as f:
json.dump(dump_schemas_from_dir('../datadictionary/gdcdictionary/schemas/'), f)