datar

0.15.6last stable release 10 months ago
Complexity Score
High
Open Issues
8
Dependent Projects
2
Weekly Downloadsglobal
1,009

License

  • MIT
    • Yesattribution
    • Permissivelinking
    • Permissivedistribution
    • Permissivemodification
    • Nopatent grant
    • Yesprivate use
    • Permissivesublicensing
    • Notrademark grant

Downloads

Readme

datar

A Grammar of Data Manipulation in python

Documentation | Reference Maps | Notebook Examples | API

datar is a re-imagining of APIs for data manipulation in python with multiple backends supported. Those APIs are aligned with tidyverse packages in R as much as possible.

Installation

pip install -U datar

# install with a backend
pip install -U datar[pandas]

# More backends support coming soon

Backends

Repo Badges datar-numpy datar-pandas datar-arrow

Example usage

# with pandas backend
from datar import f
from datar.dplyr import mutate, filter_, if_else
from datar.tibble import tibble
# or
# from datar.all import f, mutate, filter_, if_else, tibble

df = tibble(
    x=range(4),  # or c[:4]  (from datar.base import c)
    y=['zero', 'one', 'two', 'three']
)
df >> mutate(z=f.x)
"""# output
        x        y       z
  <int64> <object> <int64>
0       0     zero       0
1       1      one       1
2       2      two       2
3       3    three       3
"""

df >> mutate(z=if_else(f.x>1, 1, 0))
"""# output:
        x        y       z
  <int64> <object> <int64>
0       0     zero       0
1       1      one       0
2       2      two       1
3       3    three       1
"""

df >> filter_(f.x>1)
"""# output:
        x        y
  <int64> <object>
0       2      two
1       3    three
"""

df >> mutate(z=if_else(f.x>1, 1, 0)) >> filter_(f.z==1)
"""# output:
        x        y       z
  <int64> <object> <int64>
0       2      two       1
1       3    three       1
"""
# works with plotnine
# example grabbed from https://github.com/has2k1/plydata
import numpy
from datar import f
from datar.base import sin, pi
from datar.tibble import tibble
from datar.dplyr import mutate, if_else
from plotnine import ggplot, aes, geom_line, theme_classic

df = tibble(x=numpy.linspace(0, 2 * pi, 500))
(
    df
    >> mutate(y=sin(f.x), sign=if_else(f.y >= 0, "positive", "negative"))
    >> ggplot(aes(x="x", y="y"))
    + theme_classic()
    + geom_line(aes(color="sign"), size=1.2)
)

# very easy to integrate with other libraries
# for example: klib
import klib
from pipda import register_verb
from datar import f
from datar.data import iris
from datar.dplyr import pull

dist_plot = register_verb(func=klib.dist_plot)
iris >> pull(f.Sepal_Length) >> dist_plot()

Testimonials

@coforfe:

Thanks for your excellent package to port R (dplyr) flow of processing to Python. I have been using other alternatives, and yours is the one that offers the most extensive and equivalent to what is possible now with dplyr.

Dependencies

No runtime dependency information found for this package.

CVE IssuesActive
0
Scorecards Score
3.20
Test Coverage
No Data
Follows Semver
No
Github Stars
278
Dependenciestotal
6
DependenciesOutdated
0
DependenciesDeprecated
0
Threat Modelling
No
Repo Audits
No

Learn how to distribute datar in your own private PyPI registry

pip install datar
Processing...
Done

68 Releases

PyPI on Cloudsmith

Getting started with PyPI on Cloudsmith is fast and easy.