PyTurboJPEG

1.7.7last stable release 6 months ago
Complexity Score
Low
Open Issues
N/A
Dependent Projects
14
Weekly Downloadsglobal
8,540

License

  • MIT
    • Yesattribution
    • Permissivelinking
    • Permissivedistribution
    • Permissivemodification
    • Nopatent grant
    • Yesprivate use
    • Permissivesublicensing
    • Notrademark grant

Downloads

Readme

PyTurboJPEG

A Python wrapper of libjpeg-turbo for decoding and encoding JPEG image.

Prerequisites

  • libjpeg-turbo
  • numpy

Example

import cv2
from turbojpeg import TurboJPEG, TJPF_GRAY, TJSAMP_GRAY, TJFLAG_PROGRESSIVE, TJFLAG_FASTUPSAMPLE, TJFLAG_FASTDCT

# specifying library path explicitly
# jpeg = TurboJPEG(r'D:\turbojpeg.dll')
# jpeg = TurboJPEG('/usr/lib64/libturbojpeg.so')
# jpeg = TurboJPEG('/usr/local/lib/libturbojpeg.dylib')

# using default library installation
jpeg = TurboJPEG()

# decoding input.jpg to BGR array
in_file = open('input.jpg', 'rb')
bgr_array = jpeg.decode(in_file.read())
in_file.close()
cv2.imshow('bgr_array', bgr_array)
cv2.waitKey(0)

# decoding input.jpg to BGR array with fast upsample and fast DCT. (i.e. fastest speed but lower accuracy)
in_file = open('input.jpg', 'rb')
bgr_array = jpeg.decode(in_file.read(), flags=TJFLAG_FASTUPSAMPLE|TJFLAG_FASTDCT)
in_file.close()
cv2.imshow('bgr_array', bgr_array)
cv2.waitKey(0)

# direct rescaling 1/2 while decoding input.jpg to BGR array
in_file = open('input.jpg', 'rb')
bgr_array_half = jpeg.decode(in_file.read(), scaling_factor=(1, 2))
in_file.close()
cv2.imshow('bgr_array_half', bgr_array_half)
cv2.waitKey(0)

# getting possible scaling factors for direct rescaling
scaling_factors = jpeg.scaling_factors

# decoding JPEG image properties
in_file = open('input.jpg', 'rb')
width, height, jpeg_subsample, jpeg_colorspace = jpeg.decode_header(in_file.read())
in_file.close()

# decoding input.jpg to YUV array
in_file = open('input.jpg', 'rb')
buffer_array, plane_sizes = jpeg.decode_to_yuv(in_file.read())
in_file.close()

# decoding input.jpg to YUV planes
in_file = open('input.jpg', 'rb')
planes = jpeg.decode_to_yuv_planes(in_file.read())
in_file.close()

# encoding BGR array to output.jpg with default settings.
out_file = open('output.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array))
out_file.close()

# encoding BGR array to output.jpg with TJSAMP_GRAY subsample.
out_file = open('output_gray.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array, jpeg_subsample=TJSAMP_GRAY))
out_file.close()

# encoding BGR array to output.jpg with quality level 50. 
out_file = open('output_quality_50.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array, quality=50))
out_file.close()

# encoding BGR array to output.jpg with quality level 100 and progressive entropy coding.
out_file = open('output_quality_100_progressive.jpg', 'wb')
out_file.write(jpeg.encode(bgr_array, quality=100, flags=TJFLAG_PROGRESSIVE))
out_file.close()

# decoding input.jpg to grayscale array
in_file = open('input.jpg', 'rb')
gray_array = jpeg.decode(in_file.read(), pixel_format=TJPF_GRAY)
in_file.close()
cv2.imshow('gray_array', gray_array)
cv2.waitKey(0)

# scale with quality but leaves out the color conversion step
in_file = open('input.jpg', 'rb')
out_file = open('scaled_output.jpg', 'wb')
out_file.write(jpeg.scale_with_quality(in_file.read(), scaling_factor=(1, 4), quality=70))
out_file.close()
in_file.close()

# lossless crop image
out_file = open('lossless_cropped_output.jpg', 'wb')
out_file.write(jpeg.crop(open('input.jpg', 'rb').read(), 8, 8, 320, 240))
out_file.close()
# using PyTurboJPEG with ExifRead to transpose an image if the image has an EXIF Orientation tag.
#
# pip install PyTurboJPEG -U
# pip install exifread -U

import cv2
import numpy as np
import exifread
from turbojpeg import TurboJPEG

def transposeImage(image, orientation):
    """See Orientation in https://www.exif.org/Exif2-2.PDF for details."""
    if orientation == None: return image
    val = orientation.values[0]
    if val == 1: return image
    elif val == 2: return np.fliplr(image)
    elif val == 3: return np.rot90(image, 2)
    elif val == 4: return np.flipud(image)
    elif val == 5: return np.rot90(np.flipud(image), -1)
    elif val == 6: return np.rot90(image, -1)
    elif val == 7: return np.rot90(np.flipud(image))
    elif val == 8: return np.rot90(image)

# using default library installation
turbo_jpeg = TurboJPEG()
# open jpeg file
in_file = open('foobar.jpg', 'rb')
# parse orientation
orientation = exifread.process_file(in_file).get('Image Orientation', None)
# seek file position back to 0 before decoding JPEG image
in_file.seek(0)
# start to decode the JPEG file
image = turbo_jpeg.decode(in_file.read())
# transpose image based on EXIF Orientation tag
transposed_image = transposeImage(image, orientation)
# close the file since it's no longer needed.
in_file.close()

cv2.imshow('transposed_image', transposed_image)
cv2.waitKey(0)

Installation

macOS

  • brew install jpeg-turbo
  • pip install -U git+https://github.com/lilohuang/PyTurboJPEG.git

Windows

  • Download libjpeg-turbo official installer
  • pip install -U git+https://github.com/lilohuang/PyTurboJPEG.git

Linux

  • RHEL/CentOS/Fedora

    • Download libjpeg-turbo.repo to /etc/yum.repos.d/
    • sudo yum install libjpeg-turbo-official
    • pip install -U git+https://github.com/lilohuang/PyTurboJPEG.git
  • Ubuntu

    • sudo apt-get update
    • sudo apt-get install libturbojpeg
    • pip install -U git+https://github.com/lilohuang/PyTurboJPEG.git

Benchmark

macOS

  • macOS Sierra 10.12.6
  • Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
  • opencv-python 3.4.0.12 (pre-built)
  • turbo-jpeg 1.5.3 (pre-built)
Function Wall-clock time cv2.imdecode() 0.528 sec TurboJPEG.decode() 0.191 sec cv2.imencode() 0.875 sec TurboJPEG.encode() 0.176 sec

Windows

  • Windows 7 Ultimate 64-bit
  • Intel(R) Xeon(R) E3-1276 v3 CPU @ 3.60 GHz
  • opencv-python 3.4.0.12 (pre-built)
  • turbo-jpeg 1.5.3 (pre-built)
Function Wall-clock time cv2.imdecode() 0.358 sec TurboJPEG.decode() 0.135 sec cv2.imencode() 0.581 sec TurboJPEG.encode() 0.140 sec

Dependencies

No runtime dependency information found for this package.

CVE IssuesActive
0
Scorecards Score
3.30
Test Coverage
No Data
Follows Semver
Yes
Github Stars
255
Dependenciestotal
0
DependenciesOutdated
0
DependenciesDeprecated
0
Threat Modelling
No Data
Repo Audits
No Data

Learn how to distribute PyTurboJPEG in your own private PyPI registry

pip install PyTurboJPEG
Processing...
Done

28 Releases

PyPI on Cloudsmith

Getting started with PyPI on Cloudsmith is fast and easy.